Publications

May 02, 2019

Beating of hemp bast fibres: an examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutions

Beating of hemp bast fibres: an examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutions

In this study, a gradually increased hydro-mechanical treatments duration were applied to native hemp bast fibres with a traditional pulp and paper beating device (laboratory Valley beater). There is often a trade-off between the treatment applied to the fibres and the effect on their integrity. The multimodal analysis provided an understanding of the beating impact on the fibres at multiple scales and the experimental design made it possible to distinguish the effects of hydro- and hydro-mechanical treatment. Porosity analyses showed that beating treatment doubled the macroporosity and possibly reduced nanoporosity between the cellulose microfibrils.

The beating irregularly extracted the amorphous components known to be preferentially located in the middle lamellae and the primary cell walls rather than in the secondary walls, the overall increasing the crystallinity of cellulose from 49.3 to 59.1%, but a non-significant change in the indentation moduli of the cell wall was observed. In addition, beating treatments with two distinct mechanical severities showed a disorganization of the cellulose conformation, which significant dropped the indention moduli by 11.2 GPa and 8.4 GPa for 10 and 20 min of Valley beater hydro-mechanical treatment, respectively, compared to hydro-treated hemp fibres (16.6 GPa).

Pearson’s correlation coefficients between physicochemical features and the final indentation moduli were calculated. Strong positive correlations were highlighted between the cellulose crystallinity and rhamnose, galactose and mannose as non-cellulosic polysaccharide components of the cell wall.

Apr 19, 2019

Improvement of protein content and decrease of anti-nutritional factors in olive cake by solid-state fermentation: A way to valorize this industrial by-product in animal feed

Improvement of protein content and decrease of anti-nutritional factors in olive cake by solid-state fermentation: A way to valorize this industrial by-product in animal feed

The present work investigates the bioconversion of the olive cake (OC) generated by olive oil industries in Morocco through solid-state fermn. using selected filamentous fungi to increase its nutritional values for subsequent valorization as ruminants feed. The fungi -namely Beauveria bassiana, Fusarium flocciferum, Rhizodiscina cf. lignyota, and Aspergillus niger were cultured on OC for 15 days. Chem. compn. as well as enzymes activities were detd. Results showed (i) an increase in protein content of up to 94% for treated OC and (ii) significant (P < 0.05) decreases of phenolic compds., up to 43%, 70% and 42% for total phenolic content, total flavonoids content, and total condensed tannins, resp. Moreover, the RP-HPLC anal. of fermented OC confirmed the degrdn. of individual phenolic compds. by the strains.

These findings demonstrate that F. flocciferum and Rhizodiscina cf. lignyota are efficient enzymes producers leading to a nutritive enhancement of this byproduct.